Physics Lournal

Powered by 🌱Roam Garden

An addition operation, referred to as vector addition, which takes two vectors u,v∈Vu ,v\in V, and produces some third vector ww, which is equal to u+vu + v, and exists in V,(w∈V)V, (w \in V).

Worked Example: Associativity.

(x1 x2 ⋮ xn)+(y1 y2 ⋮ yn)+(z1 z2 ⋮ zn)=(x1+y1 x2+y2 ⋮ xn+yn )+(z1 z2 ⋮ zn)\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} + \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix}

((x1+y1)+z1 (x2+y2)+z2 ⋮ (xn+yn)+zn )\begin{pmatrix} (x_1 + y_1) + z_1 \ (x_2 + y_2 ) + z_2\ \vdots \ (x_n + y_n) + z_n \ \end{pmatrix}

(x1+(y1+z1) x2+(y2+z2) ⋮ xn+(yn+zn) )\begin{pmatrix} x_1 + (y_1 + z_1) \ x_2 + (y_2 + z_2)\ \vdots \ x_n + (y_n + z_n) \ \end{pmatrix}