Physics Lournal

Powered by 🌱Roam Garden

Vector Space

Understanding vector spaces first requires understanding of the concept of a Field, of numbers.

From this concept, the concept of a vector space can be defined:

A vector space consists of a set of elements VV, the elements of which are referred to as vectors, which is related to some field FF, and equipped with two operations:

An addition operation, referred to as vector addition, which takes two vectors u,vVu ,v\in V, and produces some third vector ww, which is equal to u+vu + v, and exists in V,(wV)V, (w \in V).

Worked Example: Associativity.

(x1 x2  xn)+(y1 y2  yn)+(z1 z2  zn)=(x1+y1 x2+y2  xn+yn )+(z1 z2  zn)\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} + \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix}

((x1+y1)+z1 (x2+y2)+z2  (xn+yn)+zn )\begin{pmatrix} (x_1 + y_1) + z_1 \ (x_2 + y_2 ) + z_2\ \vdots \ (x_n + y_n) + z_n \ \end{pmatrix}

(x1+(y1+z1) x2+(y2+z2)  xn+(yn+zn) )\begin{pmatrix} x_1 + (y_1 + z_1) \ x_2 + (y_2 + z_2)\ \vdots \ x_n + (y_n + z_n) \ \end{pmatrix}

A scalar multiplication operation that takes some scalar cc, which is an element of FF, (cFc \in F), and a vector vVv \in V, and produces a new vector ww, which is equal to c(v)c(v), and exists in V,(wV)\small V, (w \in V).

c(x1 x2  xn)=(c(x1) c(x2)  c(xn))=(cx1 cx2 \cxn)=wc\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} = \begin{pmatrix} c(x_1) \ c(x_2) \ \vdots \ c(x_n) \end{pmatrix} = \begin{pmatrix} cx_1 \ cx_2 \ \vdots \cx_n \end{pmatrix} = w.

The above operations, however, are not all that is required to define a vector space, as vector spaces must also satisfy a set of Axioms:

Vector addition must display associativity, meaning for any u,vVu, v \in V, the addition of them to yield ww, must not yield a different vector, if the two addend vectors are swapped:

u+v=w,v+u=wu + v = w, v + u = w, for all u,v,wVu, v, w \in V.

Worked Example: Associativity.

(x1 x2  xn)+(y1 y2  yn)+(z1 z2  zn)=(x1+y1 x2+y2  xn+yn )+(z1 z2  zn)\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} + \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix}

((x1+y1)+z1 (x2+y2)+z2  (xn+yn)+zn )\begin{pmatrix} (x_1 + y_1) + z_1 \ (x_2 + y_2 ) + z_2\ \vdots \ (x_n + y_n) + z_n \ \end{pmatrix}

(x1+(y1+z1) x2+(y2+z2)  xn+(yn+zn) )\begin{pmatrix} x_1 + (y_1 + z_1) \ x_2 + (y_2 + z_2)\ \vdots \ x_n + (y_n + z_n) \ \end{pmatrix}

There must exist a zero vector, written 00, meaning there is some vector in VV, such that 0+v=v0 + v = v for all vVv \in V.

0+(x1 x2  xn)=(x1 x2  xn)0 + \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} = \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix}

For every uVu \in V, there must be a vector written u-u, such that u+(u)=0u + (-u) = 0.

(y1 y2  yn)+((y1) (y2)  (yn))=0\begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} (-y_1) \ (-y_2) \ \vdots \ (-y_n) \end{pmatrix} = 0

Associativity: For every a,bFa, b \in F and any vector uVu \in V, (ab)u=a(bu)(ab)u = a(bu).

a(b)(y1 y2  yn)=a(b(y1) b(y2)  b(yn))a(b) \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} = a \begin{pmatrix} b(y_1) \ b(y_2) \ \vdots \ b(y_n) \end{pmatrix}

Distributivity: For every a,bFa, b \in F and any vectors u,vVu, v \in V:

(a+b)u=au+bu,and  a(u+v)=au+av(a + b)u = au + bu, \text{and}\; a(u + v) = au + av.

(a+b)(x1 x2  xn)=a(x1 x2  xn)+b(x1 x2  xn)(a +b) \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} = a\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} + b\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix}

a(x1+y1 x2+y2  xn+yn )=a(x1 x2  xn)+a(y1 y2  yn)a\begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} = a\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} + a\begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix}

Unitarity: 1(u)=u,uV1(u) = u, \forall u \in V.

1(x1 x2  xn)=(x1 x2  xn)1\begin{pmatrix} x_1 \ x_2\ \vdots \ x_n \end{pmatrix} = \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix}

\forall is read as "For all".