(x1 x2 ⋮ xn)+(y1 y2 ⋮ yn)+(z1 z2 ⋮ zn)=(x1+y1 x2+y2 ⋮ xn+yn )+(z1 z2 ⋮ zn)\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} + \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} + \begin{pmatrix} z_1 \ z_2 \ \vdots \ z_n \end{pmatrix} (x1 x2 ⋮ xn)+(y1 y2 ⋮ yn)+(z1 z2 ⋮ zn)=(x1+y1 x2+y2 ⋮ xn+yn )+(z1 z2 ⋮ zn)
((x1+y1)+z1 (x2+y2)+z2 ⋮ (xn+yn)+zn )\begin{pmatrix} (x_1 + y_1) + z_1 \ (x_2 + y_2 ) + z_2\ \vdots \ (x_n + y_n) + z_n \ \end{pmatrix}((x1+y1)+z1 (x2+y2)+z2 ⋮ (xn+yn)+zn )
(x1+(y1+z1) x2+(y2+z2) ⋮ xn+(yn+zn) )\begin{pmatrix} x_1 + (y_1 + z_1) \ x_2 + (y_2 + z_2)\ \vdots \ x_n + (y_n + z_n) \ \end{pmatrix}(x1+(y1+z1) x2+(y2+z2) ⋮ xn+(yn+zn) )
c(x1 x2 ⋮ xn)=(c(x1) c(x2) ⋮ c(xn))=(cx1 cx2 ⋮\cxn)=wc\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} = \begin{pmatrix} c(x_1) \ c(x_2) \ \vdots \ c(x_n) \end{pmatrix} = \begin{pmatrix} cx_1 \ cx_2 \ \vdots \cx_n \end{pmatrix} = wc(x1 x2 ⋮ xn)=(c(x1) c(x2) ⋮ c(xn))=(cx1 cx2 ⋮\cxn)=w.
0+(x1 x2 ⋮ xn)=(x1 x2 ⋮ xn)0 + \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} = \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix}0+(x1 x2 ⋮ xn)=(x1 x2 ⋮ xn)
(y1 y2 ⋮ yn)+((−y1) (−y2) ⋮ (−yn))=0\begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} + \begin{pmatrix} (-y_1) \ (-y_2) \ \vdots \ (-y_n) \end{pmatrix} = 0(y1 y2 ⋮ yn)+((−y1) (−y2) ⋮ (−yn))=0
a(b)(y1 y2 ⋮ yn)=a(b(y1) b(y2) ⋮ b(yn))a(b) \begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix} = a \begin{pmatrix} b(y_1) \ b(y_2) \ \vdots \ b(y_n) \end{pmatrix}a(b)(y1 y2 ⋮ yn)=a(b(y1) b(y2) ⋮ b(yn))
(a+b)(x1 x2 ⋮ xn)=a(x1 x2 ⋮ xn)+b(x1 x2 ⋮ xn)(a +b) \begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} = a\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} + b\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix}(a+b)(x1 x2 ⋮ xn)=a(x1 x2 ⋮ xn)+b(x1 x2 ⋮ xn)
a(x1+y1 x2+y2 ⋮ xn+yn )=a(x1 x2 ⋮ xn)+a(y1 y2 ⋮ yn)a\begin{pmatrix} x_1 + y_1 \ x_2 + y_2 \ \vdots \ x_n + y_n\ \end{pmatrix} = a\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n\end{pmatrix} + a\begin{pmatrix} y_1 \ y_2 \ \vdots \ y_n \end{pmatrix}a(x1+y1 x2+y2 ⋮ xn+yn )=a(x1 x2 ⋮ xn)+a(y1 y2 ⋮ yn)