Physics Lournal

Powered by 🌱Roam Garden

A scalar multiplication operation that takes some scalar cc, which is an element of FF, (c∈Fc \in F), and a vector v∈Vv \in V, and produces a new vector ww, which is equal to c(v)c(v), and exists in V,(w∈V)\small V, (w \in V).

c(x1 x2 ⋮ xn)=(c(x1) c(x2) ⋮ c(xn))=(cx1 cx2 ⋮\cxn)=wc\begin{pmatrix} x_1 \ x_2 \ \vdots \ x_n \end{pmatrix} = \begin{pmatrix} c(x_1) \ c(x_2) \ \vdots \ c(x_n) \end{pmatrix} = \begin{pmatrix} cx_1 \ cx_2 \ \vdots \cx_n \end{pmatrix} = w.